a2 United States Patent

Major et al.

US009235924B2

US 9,235,924 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CUBIFY BRUSH OPERATION FOR VIRTUAL
WORLDS

OTHER PUBLICATIONS

Thorvald Natvig, “Simplified Mesh Generation from Renders” NIK

(71) Applicant: MICROSOFT CORPORATION, 2006 conf L11*
Redmond, WA (US) con erence, pp. -7
’ Sio et al., Volume Rendering with Marching Cube Algorithm, 2011.*
(72) Inventors: Robert Jason Major, Redmond, WA Wang, et al., “Iso-surface Extraction and Optimization Method
(US); John Adam Croston, Seattle, WA Based on Marching Cubes,” Published Oct. 12,2009, Proceedings: In
(Us)
Us Fifth International Conference on Semantics, Knowledge and Grid,
(73) Assignee: MICROSOFT TECHNOLOGY aAr\I]ﬁIlﬁngs;;t(:) 239http://ieeexplore.ieee.org/stamp/stamp.jsp?tp:&
LICENSING, LLC, Redmond, WA 7 :
(US) ’ » edmond, Nielson, “On Marching Cubes,” Published Jul. 2003, Proceedings: In
IEEE Transactions on Visualization and Computer Graphics, vol. 9,
(*) Notice: Subject to any disclaimer, the term of this Issue 3, Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?
patent is extended or adjusted under 35 tp=&arnumber=1207437.
U.S.C. 154(b) by 209 days. (Continued)
(21) Appl. No.: 14/109,819
(22) Filed: Dec. 17, 2013 Primary Examiner — Kee M Tung
Assistant Examiner — Frank Chen
(65) Prior Publication Data 74) Attorney, Agent, or Firm — Aaron Chatterjee; Kate
ey, Ag]
US 2015/0170401 A1 Jun. 18, 2015 Drakos; Micky Minhas
(51) Int.ClL
GOGT 15/08 (2011.01) G7) ABSTRACT
gzg; ;Zzz 88(1)?88 Methods for generating a virtual world are described. The
’ virtual world may comprise a three-dimensional gameworld
G061 15/06 (2011.01) associated with a video game. The virtual world may be
GO6T 15/40 2011.01)
(52) US.Cl () represented by a plurality of voxels arranged in a three-di-
CPC) GO6T 15/08 (2013.01); GO6T 17/00 mensional grid. Each voxel of the plurality of voxels may be
""""""""" e (2013.01) associated with various attributes such as one or more color
. . . values, an opacity value, a location within the virtual world, a
(58) Field of Classification Search pacity vai .
None fill value, and a cubify value. In some embodiments, the
See application file for complete search history. Virtua.l WOI‘!d. may be gener?lted or edited using a computer
graphics editing tool that assigns one or more cubify values to
(56) References Cited one or more voxels using a voxel selection tool, such as a
cubify brush. A voxel’s cubify value may be used to deter-
U.S. PATENT DOCUMENTS mine how the voxel is rendered by a rendering engine, for
2009/0295800 AL* 12/2009 Vetter GOGT 17/005 example, whether the voxel is rendered as a rectilinear cube or
"""""""""" 345/424 as a smooth isosurface.
2011/0202538 Al 8/2011 Salemann
2013/0163836 Al* 6/2013 Pauccoceevevveinns GO6T 7/00
382/128 20 Claims, 14 Drawing Sheets
S [evarmrice 55
<
|
et ! = o]

o

/

v
Computing Environment

Network interface 115

Processor 116,

Mermory 117

B
8

Mobile Device

Network interface 125

Provessor 126
Mesmory 127
Camera 128

Sensors 129

Display

US 9,235,924 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Jin, “An Improved Marching Cubes Method for Surface Reconstruc-
tion of Volume Data,” Published Jun. 21, 2006, Proceedings: In
Proceedings of the Sixth World Congress on Intelligent Control and
Automation, Available at: http://ieeexplore.icee.org/stamp/stamp.
jsp?tp=&arnumber=1714052.

Lopes, etal., “Improving the Robustness and Accuracy of the March-
ing Cubes Algorithm for Isosurfacing,” Published Jan. 2003, Pro-
ceedings: In IEEE Transactions on Visualization and Computer

Graphics, vol. 9, Issue 1 pp. 14, Available at: http://ieecexplore.iece.
org/stannp/stamp.jsp?tp=&arnumber=1175094.

Dietrich, et al., “Edge Transformations for Improving Mesh Quality
of Marching Cubes,” Published Jan. 2009, Proceedings: In IEEE
Transactions on Visualization and Computer Graphics, vol. 15, Issue
1, Available at: http://ieeexplore.icee.org/stamp/stamp jsp?tp=&
arnumber=4487066.

Montanit, et al., “Discretized Marching Cubes,” Published Oct. 17,
1994, Proceedings: In IEEE Conference on Visualization, Available
at: http://ieeexplore.icee.org/stamp/stamp.jsp?tp=&arnumber=
346308.

* cited by examiner

U.S. Patent Jan. 12,2016 Sheet 1 of 14 US 9,235,924 B2

Server

15 ’ Network interface 15

Processor 15

Memory 157

Network(s)
180

o]

‘-----

\11

Computing Environment

Mobile Device

Network interface 12

Network interface 115 Processor 12

Processor 116 Memory 127

Memory 117 Camera 128

Sensors 12

Display 124

.
{aw

FIG. 1

U.S. Patent Jan. 12,2016 Sheet 2 of 14 US 9,235,924 B2

A

O ™253
10:21 PM
O—255
Mobile Device 12
FIG. 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 14 US 9,235,924 B2

N
o [d
iz

—~
r~

FIG. 3

B2pmo,

Sean
e

29

US 9,235,924 B2

Sheet 4 of 14

Jan. 12, 2016

U.S. Patent

861 eleq ainponis

061 auibu3g uogiubooay
ainjsag) pue 1slq0

Z61 nun Aowsiy

161 3un buissasoid

v61 auibus
Buisseooid olpne pue abew|

061 uoneoyddy

I Juswuodiaue Buinndwo)

9v

v 'Old
or
0Z 9o1naq aimde)
O— o

¥ Aowapy PR Q\ J
8¢
9¢

7% lossanoid - Q\J
14*

4>

US 9,235,924 B2

Sheet 5 of 14

Jan. 12, 2016

U.S. Patent

s
22

,..
S
SR

Ragm

E:

FIG. 5A

FIG. 5B

U.S. Patent Jan. 12, 2016 Sheet 6 of 14 US 9,235,924 B2

U.S. Patent Jan. 12, 2016 Sheet 7 of 14 US 9,235,924 B2

FIG. 5E

R Lat ¢
Hoysuag Jor v

Chooss Quest Tow?

U.S. Patent Jan. 12, 2016 Sheet 8 of 14 US 9,235,924 B2

602

U.S. Patent

Jan. 12,2016 Sheet 10 of 14 US 9,235,924 B2
10% 20% 30%
102 105 107
30% 50% 60%
103 701 708
70% 80% 90%
1704 706 709

FIG. 7E

U.S. Patent Jan. 12,2016 Sheet 11 of 14 US 9,235,924 B2

Acquire a plurality of voxels associated with a virtual world, ~ }"802
the plurality of voxels includes a first voxel

v

Display the virtual world based on the plurality of voxels 804
Determine a cubify value for the first voxel 806
Detect a selection of the first voxel 808

v

Assign the cubify value to the first voxel in response to the 810
selection of the first voxel

v

Render one or more images of the virtual world based on 812
the plurality of voxels, the first voxel is rendered based on
the cubify value

v

Display the one or more images, the one or more images 814
include the rendered first voxel

FIG. 8A

U.S. Patent Jan. 12,2016 Sheet 12 of 14 US 9,235,924 B2

Acquire a plurality of voxels associated with a virtual world, _~822
the plurality of voxels includes a first set of voxels and a
second set of voxels

v

Determine a first cubify value associated with rendering a 824
voxel using one or more rectilinear surfaces

v

Determine a second cubify value associated with rendering 826
a voxel using one or more smooth isosurfaces

v

Assign the first cubify value to each voxel of the first set of 828
voxels

v

Assign the second cubify value to each voxel of the second 830
set of voxels

v

Render one or more images of the virtual world based on 832
the plurality of voxels, each voxel of the first set of voxels is
rendered based on one or more fill values associated with
one or more adjacent voxels to the voxel

v

Display the one or more images of the virtual world 834

FIG. 8B

US 9,235,924 B2

Sheet 13 of 14

Jan. 12, 2016

U.S. Patent

88€8
JOJ02UU0Y jBOISAYd

6 'Old

Z€g Josuss aimesadwa]

9z¢g Josuas ybi

A

A

1A%
eioWeRD

445
auoydosipy

0ces
1ayeadg

81¢eeg
uaalos/pedAiay

/aoeLioul Jasn

1

i

t

t

91¢8
lojeiqia/sebury

]

F1€g Josuss
UONEJUSLIO/UBWIBAOI

(s)i0ss900id

>l 2

Y

G9¢E8
Sd9

¥0€g Ateneg

Y

Y

8DEQ JoAleoal
Jepiwisuen
paJelu

90¢g Jonisoal
jleniwisues 4y

eje(q Buynpeyog-
BJB(10BILOD)-
S0J0U-
2ISN-
0peg obeioys
91Je|OA-UON

uLepy-
sowes)-

19SMOIg 18LIoN-

Jokeld eIpapy-
jepuajen-
%00g SS3IpPY-
08

suoljesiddy

0158 Atowan

Z0ES euusjuy

0£8 921ASp S|IqON

US 9,235,924 B2

Sheet 14 of 14

Jan. 12, 2016

U.S. Patent

swebold 0l Ol
uoltedijddy
0Wsy
i ,/ N
roTTTT POt N 8L OSNOW eeg S8INPOIN sweibold Wolshs
_ L8eE weibosd weiboid LU0 uonedddy Bupesedp
LY - osze _ _
//mqu Y \ gvez - ez 7 - e
_wu:QEOO 86z G /// - 7
BloWaY 017 (.. .
wapoyy k ,mNL 522 o \ 0872
SHOMON P TT I I T Iy Ty AR S R AR Ao AR
2Oy BPIAN m AN X/ 4 = _ [m
i gleq I
| aoRpeUl B0BIaIL) soByiel] L
mwmkmwc_ nduj Kiowapy JOA-UON KioWap "JoA-UON wesBoid N ez
ry— / “ MIOMIEN Bs alqeADLSY 5|qBAOLLAY-UON !
1 i
Belv 1890 ! N ez - ogzz \ g5z - opzz | | sempop wesboig seuo | |
YXAA J: 657z
1
i " sng wojskg “
sioneads “ / sweiboid uanesyddy //mr
% N 1222 ™ G822
| a0BLBIY “
SENIRY : [eseuduag www_wz_ mesg% |
! Indino PA syl UaeIsdo N- iz
i T N UISS80014 ;
i o) Y 1
— | 572 0677 - ~ |
1 i
10}U0 _ L
Hon m N ez = N gz
- e}
D N e <] m
244 “ Aiowsjy waishg _
1 i
,,, —
S~ 0T

US 9,235,924 B2

1

CUBIFY BRUSH OPERATION FOR VIRTUAL
WORLDS

BACKGROUND

Video game development may refer to the software devel-
opment process by which a video game may be produced. A
video game may comprise an electronic game that involves
human interaction by a game player of the video game for
controlling video game objects, such as controlling the move-
ment of a game-related character. The video game may be
displayed to the game player via a display device, such as a
television screen or computer monitor. The display device
may display images corresponding with a gameworld or vir-
tual environment associated with the video game. Various
computing devices may be used for playing a video game,
generating game-related images associated with the video
game, and controlling gameplay interactions with the video
game. For example, a video game may be played using a
personal computer, handheld computing device, mobile
device, or dedicated video game console.

SUMMARY

Technology is described for generating and editing a vir-
tual world. The virtual world may comprise a three-dimen-
sional gameworld associated with a video game. The virtual
world may be represented by a plurality of voxels arranged in
athree-dimensional grid. Each voxel of the plurality of voxels
may be associated with various attributes such as a material
(e.g., a grass material or a rock material), one or more color
values, an opacity value, a location within the virtual world, a
fill value, and a cubify value. In one example, each voxel of
the plurality of voxels may be associated with a material and
a fill value associated with how much of the voxel is to be
filled with the material. In some embodiments, the virtual
world may be generated or edited using a computer graphics
editing tool that assigns one or more cubify values to one or
more voxels using a voxel selection tool, such as a cubify
brush. A voxel’s cubify value may be used to determine how
the voxel is rendered by a rendering engine, for example,
whether the voxel is rendered as a rectilinear cube or as a
smooth isosurface.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of one embodiment of a net-
worked computing environment.

FIG. 2 depicts one embodiment of a mobile device that may
beused for providing a video game development environment
for creating a video game.

FIG. 3 depicts one embodiment of a computing system for
performing gesture recognition.

FIG. 4 depicts one embodiment of computing system
including a capture device and computing environment.

FIG. 5A depicts one embodiment of a video game devel-
opment environment in which a game developer may select a
topography associated with a gameworld.

FIG. 5B depicts one embodiment of a video game devel-
opment environment in which a game developer may sculpt
portions of a gameworld.

20

35

40

45

50

55

2

FIG. 5C depicts one embodiment of a videogame develop-
ment environment in which a game developer may apply a
three-dimensional voxel material to portions of a gameworld.

FIG. 5D depicts one embodiment of a videogame develop-
ment environment in which a game developer may select a
protagonist.

FIG. 5E depicts one embodiment of a videogame develop-
ment environment in which a story seed may be selected.

FIG. 5F depicts one embodiment of a videogame develop-
ment environment in which game development decisions
may be made during a gameplay sequence provided to a game
developer during game development.

FIG. 6A depicts one embodiment of a video game devel-
opment environment in which a game developer may assign
cubify values to portions of a gameworld.

FIG. 6B depicts one embodiment of a video game devel-
opment environment in which a game developer has assigned
a cubify value to a plurality of voxels corresponding with
portions of the gameworld depicted in FIG. 6A.

FIGS. 7A-7D depict various embodiments of a two-dimen-
sional slice through a rendered three-dimension voxel.

FIG. 7E depicts one embodiment of a two-dimensional
slice through nine voxels.

FIG. 8A is a flowchart describing one embodiment of a
method for generating a virtual world.

FIG. 8B is a flowchart describing an alternative embodi-
ment of a method for generating a virtual world.

FIG. 9 is a block diagram of one embodiment of a mobile
device.

FIG. 10 is a block diagram of an embodiment of a comput-
ing system environment.

DETAILED DESCRIPTION

Technology is described for generating and editing a vir-
tual world or a computer-generated virtual environment. The
virtual world may comprise a three-dimensional gameworld
associated with a video game. The virtual world may be
represented by a plurality of voxels arranged in a three-di-
mensional grid. Each voxel of the plurality of voxels may be
associated with various attributes such as a material (e.g., a
grass material or a rock material), one or more color values, an
opacity value, a location within the virtual world, a fill value,
and a cubify value. In one example, each voxel ofthe plurality
of voxels may be associated with a material and a fill value
associated with how much of the voxel is to be filled with the
material. In some embodiments, the virtual world may be
generated or edited using a computer graphics editing tool
(e.g., an computer graphics editing tool that is integrated with
a video game development environment) that assigns one or
more cubify values to one or more voxels using a voxel
selection tool, such as a cubify brush. A voxel’s cubify value
may be used to determine how the voxel is rendered by a
rendering engine, for example, whether the voxel is rendered
as a rectilinear volume (e.g., a rectilinear cube or rectangular
prism) or as a smooth isosurface. A cubified voxel may com-
prise a voxel that is rendered as one or more rectilinear vol-
umes corresponding with horizontal and/or vertical surfaces
within the voxel. In some cases, the rendered horizontal and
vertical surfaces of a cubified voxel may intersect at 90 degree
angles within the voxel.

A virtual world may be generated based on a plurality of
voxels arranged in a three-dimensional grid. In one example,
each voxel of the plurality of voxels may correspond with a 1
meter by 1 meter by 1 meter volume within the virtual world.
In one embodiment, if a particular voxel of the plurality of
voxels has been assigned a non-zero cubify value, then the

US 9,235,924 B2

3

particular voxel may be rendered to include a rectilinear vol-
ume that extends to the boundaries of the voxel (e.g., the
particular voxel may be rendered as a block or box with the
dimensions of the particular voxel) if a fill value associated
with the particular voxel is greater than or equal to 50%. Ifthe
fill value is less than 50%, then the particular voxel may be
rendered without an opaque volume (e.g., as an empty or
transparent block). On the other hand, if the particular voxel
has been assigned a cubify value of zero, then the particular
voxel may be rendered to include smooth isosurfaces.

In some embodiments, a virtual world may be generated
using a first set of voxels that may be rendered as rectilinear
cubes and a second set of voxels that may be rendered as
smooth isosurfaces. In one example, the second set of voxels
may be rendered using a marching cubes technique. One
benefit of generating the virtual world using both a first set of
voxels that may be rendered as rectilinear cubes and a second
set of voxels that may be rendered as smooth isosurfaces is
that the virtual world may comprise both “man-made” struc-
tures that may be better represented using rectilinear volumes
(e.g., buildings and walls) and organic smooth surfaces that
may be better represented using smooth isosurfaces (e.g., a
rolling hill). Thus, the virtual world may be generated using a
mixture of both hard edged rectilinear surfaces and smooth
rolling surfaces. An end user of a computer graphics editing
tool for generating and editing the virtual world may use a
cubify brush to identify the first set of voxels and to assign a
cubity value to each voxel of the first set of voxels.

In some cases, a particular voxel may be rendered based on
both a cubify value associated with the particular voxel and a
fill value associated with the particular voxel (e.g., represent-
ing a degree to which the voxel should be filled or made
opaque) to include rectilinear surfaces that are not on a voxel
boundary of the particular voxel. In one embodiment, if a
particular voxel has been assigned a non-zero cubify value,
then the particular voxel may be rendered to include horizon-
tal and/or vertical surfaces, whose relative heights and/or
positions within the particular voxel may be determined
based on a fill value associated with the particular voxel. The
horizontal and/or vertical surfaces within the particular voxel
need not correspond with a boundary of the voxel (e.g., a
horizontal surface my cut through the middle of the voxel). In
one example, a horizontal surface within the particular voxel
may create an opaque sub-volume within the particular voxel
that has a 1 meter width, a 1 meter length, and a 0.2 meter
height.

In some embodiments, if a particular voxel has been
assigned a non-zero cubify value, then the particular voxel
may be rendered to include both horizontal and vertical sur-
faces, whose relative heights and/or positions within the par-
ticular voxel may be determined based on a fill value associ-
ated with the particular voxel and one or more fill values
associated with neighboring voxels of the particular voxel. In
one example, the position of a horizontal surface within the
particular voxel may be determined based on a first fill value
associated with a first voxel located above the particular voxel
and a second fill value associated with a second voxel located
below the particular voxel. In another example, the position of
a vertical surface within the voxel may be determined based
on fill values associated with voxels adjacent to the particular
voxel that share a common plane that intersects the vertical
surface at a 90 degree angle.

One issue involving the development of a video game by a
game developer is that the time to create and edit a virtual
world associated with the video game (e.g., a gameworld)
may be significant. For example, the time to create various
gameworld topographies and gameworld objects (e.g.,

10

20

30

40

45

50

55

4

houses and walls) may provide significant barriers to fully
developing a gameworld for the video game. Thus, there is a
need for providing a video game development environment
that enables a game developer to quickly and easily generate
and edit a gameworld.

FIG. 1 is a block diagram of one embodiment of a net-
worked computing environment 100 in which the disclosed
technology may be practiced. Networked computing environ-
ment 100 includes a plurality of computing devices intercon-
nected through one or more networks 180. The one or more
networks 180 allow a particular computing device to connect
to and communicate with another computing device. The
depicted computing devices include computing environment
11, computing environment 13, mobile device 12, and server
15. The computing environment 11 may comprise a gaming
console for playing video games. In some embodiments, the
plurality of computing devices may include other computing
devices not shown. In some embodiments, the plurality of
computing devices may include more than or less than the
number of computing devices shown in FIG. 1. The one or
more networks 180 may include a secure network such as an
enterprise private network, an unsecure network such as a
wireless open network, a local area network (LAN), a wide
area network (WAN), and the Internet. Each network of the
one or more networks 180 may include hubs, bridges, routers,
switches, and wired transmission media such as a wired net-
work or direct-wired connection.

One embodiment of computing environment 11 includes a
network interface 115, processor 116, and memory 117, all in
communication with each other. Network interface 115
allows computing environment 11 to connect to one or more
networks 180. Network interface 115 may include a wireless
network interface, a modem, and/or a wired network inter-
face. Processor 116 allows computing environment 11 to
execute computer readable instructions stored in memory 117
in order to perform processes discussed herein.

In some embodiments, the computing environment 11 may
include one or more CPUs and/or one or more GPUs. In some
cases, the computing environment 11 may integrate CPU and
GPU functionality on a single chip. In some cases, the single
chip may integrate general processor execution with com-
puter graphics processing (e.g., 3D geometry processing) and
other GPU functions including GPGPU computations. The
computing environment 11 may also include one or more
FPGAs for accelerating graphics processing or performing
other specialized processing tasks. In one embodiment, the
computing environment 11 may include a CPU and a GPU in
communication with a shared RAM. The shared RAM may
comprise a DRAM (e.g., a DDR3 SDRAM).

Server 15 may allow a client or computing device to down-
load information (e.g., text, audio, image, and video files)
from the server or to perform a search query related to par-
ticular information stored on the server. In one example, a
computing device may download purchased downloadable
content and/or user generated content from server 15 for use
with a video game development environment running on the
computing device. In general, a “server” may include a hard-
ware device that acts as the host in a client-server relationship
or a software process that shares a resource with or performs
work for one or more clients. Communication between com-
puting devices in a client-server relationship may be initiated
by a client sending a request to the server asking for access to
a particular resource or for particular work to be performed.
The server may subsequently perform the actions requested
and send a response back to the client.

One embodiment of server 15 includes a network interface
155, processor 156, and memory 157, all in communication

US 9,235,924 B2

5

with each other. Network interface 155 allows server 15 to
connect to one or more networks 180. Network interface 155
may include a wireless network interface, a modem, and/or a
wired network interface. Processor 156 allows server 15 to
execute computer readable instructions stored in memory 157
in order to perform processes discussed herein.

One embodiment of mobile device 12 includes a network
interface 125, processor 126, memory 127, camera 128, sen-
sors 129, and display 124, all in communication with each
other. Network interface 125 allows mobile device 12 to
connect to one or more networks 180. Network interface 125
may include a wireless network interface, a modem, and/or a
wired network interface. Processor 126 allows mobile device
12 to execute computer readable instructions stored in
memory 127 in order to perform processes discussed herein.
Camera 128 may capture color images and/or depth images of
an environment. The mobile device 12 may include outward
facing cameras that capture images of the environment and
inward facing cameras that capture images of the end user of
the mobile device. Sensors 129 may generate motion and/or
orientation information associated with mobile device 12. In
some cases, sensors 129 may comprise an inertial measure-
ment unit (IMU). Display 124 may display digital images
and/or videos. Display 124 may comprise an LED or OLED
display. The mobile device 12 may comprise a tablet com-
puter.

In some embodiments, various components of acomputing
device including a network interface, processor, and memory
may be integrated on a single chip substrate. In one example,
the components may be integrated as a system on a chip
(SOC). In other embodiments, the components may be inte-
grated within a single package.

In some embodiments, a computing device may provide a
natural user interface (NUI) to an end user of the computing
device by employing cameras, sensors, and gesture recogni-
tion software. With a natural user interface, a person’s body
parts and movements may be detected, interpreted, and used
to control various aspects of a computing application running
on the computing device. In one example, a computing device
utilizing a natural user interface may infer the intent of a
person interacting with the computing device (e.g., that the
end user has performed a particular gesture in order to control
the computing device).

Networked computing environment 100 may provide a
cloud computing environment for one or more computing
devices. Cloud computing refers to Internet-based comput-
ing, wherein shared resources, software, and/or information
are provided to one or more computing devices on-demand
via the Internet (or other global network). The term “cloud” is
used as a metaphor for the Internet, based on the cloud draw-
ings used in computer networking diagrams to depict the
Internet as an abstraction of the underlying infrastructure it
represents.

In one embodiment, a video game development program
running on a computing environment, such as computing
environment 11, may provide a video game development
environment to a game developer that allows the game devel-
oper to customize a gameworld environment associated with
avideo game by virtually sculpting (or shaping) and painting
the gameworld and positioning and painting game-related
objects within the gameworld (e.g., houses and rocks). The
video game development environment may combine game
development activities with gameplay. In one example, the
video game development environment may prompt a game
developer using the computing environment to specify vari-
ous video game design options such as whether the video
game uses a first-person perspective view (e.g., a first-person

10

15

20

25

30

35

40

45

50

55

60

65

6

shooter video game) and/or a third-person perspective view
(e.g., a third-person action adventure video game). The video
game development environment may then prompt the game
developer to select a game story related option (e.g., whether
the video game will involve saving a princess or discovering
a treasure). Once the game story related option has been
selected, the video game development environment may then
generate a gameplay sequence (e.g., providing five minutes of
gameplay within a gameworld) in which the game developer
may control a game-related character (e.g., the game’s pro-
tagonist) within the gameworld. The game developer may
control the game-related character during the gameplay
sequence using touch-sensitive input controls or gesture rec-
ognition based input controls.

During the gameplay sequence, the game-related character
may satisfy a particular gameplay objective that may allow
particular game design options to be unlocked or to become
available to the game developer. In some cases, some of the
video game design options may be locked or otherwise made
not accessible to the game developer if the game developer
fails to satisfy the particular gameplay objective during the
gameplay sequence. In one example, if the particular game-
play objective is not satisfied, then the game developer may be
asked to choose what kinds of monsters should be included
near a cave entrance within the gameworld. However, if the
particular gameplay objective is satisfied, then the game
developer may be asked to identity the kinds of monsters to be
included near a cave entrance within the gameworld and to
provide specific locations for individual monsters within the
gameworld. The gameworld may comprise a computer-gen-
erated virtual world in which game-related objects associated
with the video game (e.g., game-related characters) may be
controlled or moved by a game player.

FIG. 2 depicts one embodiment of a mobile device 12 that
may be used for providing a video game development envi-
ronment for creating a video game. The mobile device 12 may
comprise a tablet computer with a touchscreen interface. In
one embodiment, the video game development environment
may run locally on the mobile device 12. In other embodi-
ments, the mobile device 12 may facilitate control of a video
game development environment running on a computing
environment, such as computing environment 11 in FIG. 1, or
running on a server, such as server 15 in FIG. 1, via a wireless
network connection. As depicted, mobile device 12 includes
a touchscreen display 256, a microphone 255, and a front-
facing camera 253. The touchscreen display 256 may include
an LCD display for presenting a user interface to an end user
of the mobile device. The touchscreen display 256 may
include a status area 252 which provides information regard-
ing signal strength, time, and battery life associated with the
mobile device. In some embodiments, the mobile device may
determine a particular location of the mobile device (e.g., via
GPS coordinates). The microphone 255 may capture audio
associated with the end user (e.g., the end user’s voice) for
determining the identity of the end user and for handling
voice commands issued by the end user. The front-facing
camera 253 may be used to capture images of the end user for
determining the identity of the end user and for handling
gesture commands issued by the end user. In one embodi-
ment, an end user of the mobile device 12 may generate a
video game by controlling a video game development envi-
ronment viewed on the mobile device using touch gestures
and/or voice commands.

FIG. 3 depicts one embodiment of a computing system 10
that utilizes depth sensing for performing object and/or ges-
ture recognition. The computing system 10 may include a
computing environment 11, a capture device 20, and a display

US 9,235,924 B2

7

16, all in communication with each other. Computing envi-
ronment 11 may include one or more processors. Capture
device 20 may include one or more color or depth sensing
cameras that may be used to visually monitor one or more
targets including humans and one or more other real objects
within a particular environment. Capture device 20 may also
include a microphone. In one example, capture device 20 may
include a depth sensing camera and a microphone and com-
puting environment 11 may comprise a gaming console.

In some embodiments, the capture device 20 may include
an active illumination depth camera, which may use a variety
of'techniques in order to generate a depth map of an environ-
ment or to otherwise obtain depth information associated the
environment including the distances to objects within the
environment from a particular reference point. The tech-
niques for generating depth information may include struc-
tured light illumination techniques and time of flight (TOF)
techniques.

As depicted in FIG. 3, a user interface 19 is displayed on
display 16 such that an end user 29 of the computing system
10 may control a computing application running on comput-
ing environment 11. The user interface 19 includes images 17
representing user selectable icons. In one embodiment, com-
puting system 10 utilizes one or more depth maps in order to
detect a particular gesture being performed by end user 29. In
response to detecting the particular gesture, the computing
system 10 may control the computing application, provide
input to the computing application, or execute a new comput-
ing application. In one example, the particular gesture may be
used to identify a selection of one of the user selectable icons
associated with one of three different story seeds for a video
game. In one embodiment, an end user of the computing
system 10 may generate a video game by controlling a video
game development environment viewed on the display 16
using gestures.

FIG. 4 depicts one embodiment of computing system 10
including a capture device 20 and computing environment 11.
In some embodiments, capture device 20 and computing
environment 11 may be integrated within a single computing
device. The single computing device may comprise a mobile
device, such as mobile device 12 in FIG. 1.

In one embodiment, the capture device 20 may include one
or more image sensors for capturing images and videos. An
image sensor may comprise a CCD image sensor or a CMOS
image sensor. In some embodiments, capture device 20 may
include an IR CMOS image sensor. The capture device 20
may also include a depth sensor (or depth sensing camera)
configured to capture video with depth information including
a depth image that may include depth values via any suitable
technique including, for example, time-of-flight, structured
light, stereo image, or the like.

The capture device 20 may include an image camera com-
ponent 32. In one embodiment, the image camera component
32 may include a depth camera that may capture a depth
image of a scene. The depth image may include a two-dimen-
sional (2-D) pixel area of the captured scene where each pixel
in the 2-D pixel area may represent a depth value such as a
distance in, for example, centimeters, millimeters, or the like
of an object in the captured scene from the image camera
component 32.

The image camera component 32 may include an IR light
component 34, a three-dimensional (3-D) camera 36, and an
RGB camera 38 that may be used to capture the depth image
of a capture area. For example, in time-of-flight analysis, the
IR light component 34 of the capture device 20 may emit an
infrared light onto the capture area and may then use sensors
to detect the backscattered light from the surface of one or

10

15

20

25

30

35

40

45

50

55

60

65

8

more objects in the capture area using, for example, the 3-D
camera 36 and/or the RGB camera 38. In some embodiments,
pulsed infrared light may be used such that the time between
an outgoing light pulse and a corresponding incoming light
pulse may be measured and used to determine a physical
distance from the capture device 20 to a particular location on
the one or more objects in the capture area. Additionally, the
phase of the outgoing light wave may be compared to the
phase of the incoming light wave to determine a phase shift.
The phase shift may then be used to determine a physical
distance from the capture device to a particular location asso-
ciated with the one or more objects.

In another example, the capture device 20 may use struc-
tured light to capture depth information. In such an analysis,
patterned light (i.e., light displayed as aknown pattern such as
grid pattern or a stripe pattern) may be projected onto the
capture area via, for example, the IR light component 34.
Upon striking the surface of one or more objects (or targets)
in the capture area, the pattern may become deformed in
response. Such a deformation of the pattern may be captured
by, for example, the 3-D camera 36 and/or the RGB camera
38 and analyzed to determine a physical distance from the
capture device to a particular location on the one or more
objects. Capture device 20 may include optics for producing
collimated light. In some embodiments, a laser projector may
be used to create a structured light pattern. The light projector
may include a laser, laser diode, and/or LED.

In some embodiments, two or more different cameras may
be incorporated into an integrated capture device. For
example, a depth camera and a video camera (e.g., an RGB
video camera) may be incorporated into a common capture
device. In some embodiments, two or more separate capture
devices of the same or differing types may be cooperatively
used. For example, a depth camera and a separate video
camera may be used, two video cameras may be used, two
depth cameras may be used, two RGB cameras may be used,
or any combination and number of cameras may be used. In
one embodiment, the capture device 20 may include two or
more physically separated cameras that may view a capture
area from different angles to obtain visual stereo data that
may be resolved to generate depth information. Depth may
also be determined by capturing images using a plurality of
detectors that may be monochromatic, infrared, RGB, or any
other type of detector and performing a parallax calculation.
Other types of depth image sensors can also be used to create
a depth image.

As depicted, capture device 20 may also include one or
more microphones 40. Each of the one or more microphones
40 may include a transducer or sensor that may receive and
convert sound into an electrical signal. The one or more
microphones may comprise a microphone array in which the
one or more microphones may be arranged in a predeter-
mined layout.

The capture device 20 may include a processor 42 that may
be in operative communication with the image camera com-
ponent 32. The processor may include a standardized proces-
sor, a specialized processor, a microprocessor, or the like. The
processor 42 may execute instructions that may include
instructions for storing filters or profiles, receiving and ana-
lyzing images, determining whether a particular situation has
occurred, or any other suitable instructions. It is to be under-
stood that at least some image analysis and/or target analysis
and tracking operations may be executed by processors con-
tained within one or more capture devices such as capture
device 20.

The capture device 20 may include a memory 44 that may
store the instructions that may be executed by the processor

US 9,235,924 B2

9

42, images or frames of images captured by the 3-D camera or
RGB camera, filters or profiles, or any other suitable infor-
mation, images, or the like. In one example, the memory 44
may include random access memory (RAM), read only
memory (ROM), cache, Flash memory, a hard disk, or any
other suitable storage component. As depicted, the memory
44 may be a separate component in communication with the
image capture component 32 and the processor 42. In another
embodiment, the memory 44 may be integrated into the pro-
cessor 42 and/or the image capture component 32. In other
embodiments, some or all of the components 32, 34, 36, 38,
40, 42 and 44 of the capture device 20 may be housed in a
single housing.

The capture device 20 may be in communication with the
computing environment 11 via a communication link 46. The
communication link 46 may be a wired connection including,
for example, a USB connection, a FireWire connection, an
Ethernet cable connection, or the like and/or a wireless con-
nection such as a wireless 802.11b, g, a, or n connection. The
computing environment 12 may provide a clock to the capture
device 20 that may be used to determine when to capture, for
example, a scene via the communication link 46. In one
embodiment, the capture device 20 may provide the images
captured by, for example, the 3D camera 36 and/or the RGB
camera 38 to the computing environment 11 via the commu-
nication link 46.

As depicted in FIG. 4, computing environment 11 may
include an image and audio processing engine 194 in com-
munication with application 196. Application 196 may com-
prise an operating system application or other computing
application such as a video game development program.
Image and audio processing engine 194 includes object and
gesture recognition engine 190, structure data 198, process-
ing unit 191, and memory unit 192, all in communication with
each other. Image and audio processing engine 194 processes
video, image, and audio data received from capture device 20.
To assist in the detection and/or tracking of objects, image and
audio processing engine 194 may utilize structure data 198
and object and gesture recognition engine 190.

Processing unit 191 may include one or more processors
for executing object, facial, and/or voice recognition algo-
rithms. In one embodiment, image and audio processing
engine 194 may apply object recognition and facial recogni-
tion techniques to image or video data. For example, object
recognition may be used to detect particular objects (e.g.,
soccer balls, cars, or landmarks) and facial recognition may
be used to detect the face of a particular person. Image and
audio processing engine 194 may apply audio and voice
recognition techniques to audio data. For example, audio
recognition may be used to detect a particular sound. The
particular faces, voices, sounds, and objects to be detected
may be stored in one or more memories contained in memory
unit 192. Processing unit 191 may execute computer readable
instructions stored in memory unit 192 in order to perform
processes discussed herein.

The image and audio processing engine 194 may utilize
structure data 198 while performing object recognition.
Structure data 198 may include structural information about
targets and/or objects to be tracked. For example, a skeletal
model of a human may be stored to help recognize body parts.
In another example, structure data 198 may include structural
information regarding one or more inanimate objects in order
to help recognize the one or more inanimate objects.

The image and audio processing engine 194 may also
utilize object and gesture recognition engine 190 while per-
forming gesture recognition. In one example, object and ges-
ture recognition engine 190 may include a collection of ges-

10

15

20

25

30

35

40

45

50

55

60

65

10

ture filters, each comprising information concerning a gesture
that may be performed by a skeletal model. The object and
gesture recognition engine 190 may compare the data cap-
tured by capture device 20 in the form of the skeletal model
and movements associated with it to the gesture filters in a
gesture library to identify when a user (as represented by the
skeletal model) has performed one or more gestures. In one
example, image and audio processing engine 194 may use the
object and gesture recognition engine 190 to help interpret
movements of a skeletal model and to detect the performance
of a particular gesture.

More information about detecting objects and performing
gesture recognition can be found in U.S. patent application
Ser. No. 12/641,788, “Motion Detection Using Depth
Images,” filed on Dec. 18, 2009; and U.S. patent application
Ser. No. 12/475,308, “Device for Identifying and Tracking
Multiple Humans over Time,” both of which are incorporated
herein by reference in their entirety. More information about
object and gesture recognition engine 190 can be found in
U.S. patent application Ser. No. 12/422,661, “Gesture Rec-
ognizer System Architecture,” filed on Apr. 13, 2009, incor-
porated herein by reference in its entirety. More information
about recognizing gestures can be found in U.S. patent appli-
cation Ser. No. 12/391,150, “Standard Gestures,” filed on
Feb. 23, 2009; and U.S. patent application Ser. No. 12/474,
655, “Gesture Tool,” filed on May 29, 2009, both of which are
incorporated by reference herein in their entirety.

FIGS. 5A-5F depict various embodiments of a video game
development environment.

FIG. 5A depicts one embodiment of a video game devel-
opment environment in which a game developer may selecta
topography associated with a gameworld. In one example, the
game developer may be given choices 55 regarding the terrain
and/or appearance of the gameworld. In one embodiment, the
choices 55 may correspond with three predesigned game-
world environments. The game developer may select a type of
terrain such as rivers, mountains, and canyons. Based on the
terrain selection, the game developer may then select a biome
for the gameworld, such as woodlands, desert, or arctic. A
biome may comprise an environment in which similar cli-
matic conditions exist. The game developer may also select a
time of day (e.g., day, night, or evening) to establish lighting
conditions within the gameworld.

FIG. 5B depicts one embodiment of a video game devel-
opment environment in which a game developer may sculpt
(or shape) portions of a gameworld. The game developer may
use a pointer or selection region for selecting a region within
the gameworld to be sculpted. The pointer or selection region
may be controlled by the game developer using a touchscreen
interface or by performing gestures or voice commands. As
depicted, a selection region 52 in the shape ofa sphere may be
used to sculpt a virtual hill 51 within the gameworld. The
game developer may sculpt the virtual hill 51 from a flat
gameworld or after portions of a gameworld have already
been generated, for example, after a mountainous gameworld
has been generated similar to that depicted in FIG. 5A.

Using the selection region 52, the game developer may
modify the topography of a gameworld by pushing and/or
pulling portions of the gameworld or digging through sur-
faces of the gameworld (e.g., drilling a hole in a mountain).
The game developer may use selection tools to customize the
topography of the gameworld and to add objects into the
gameworld such as plants, animals, and inanimate objects,
such as rocks. Each of the objects placed into the gameworld
may be given a “brain” corresponding with programmed
object behaviors, such as making a rock run away from a

US 9,235,924 B2

11

protagonist or fight the protagonist if the protagonist gets
within a particular distance of the rock.

FIG. 5C depicts one embodiment of a videogame develop-
ment environment in which a game developer may apply a
three-dimensional voxel material to portions of a gameworld
and/or paint or color portions of the gameworld. The three-
dimensional voxel material may comprise a dirt material, a
grass material, a snow and ice material, or a rock material. As
depicted, a selection region 52 may be used to apply a three-
dimensional voxel material to portions of the gameworld. In
one example, a region of the gameworld that is originally
covered with a dirt material may be converted to a rock
material. The game developer was also paint objects, such as
rocks and/or NPCs that have been placed into the gameworld
by the game developer or automatically placed by the
videogame development environment based on previous
video game design decision made by the game developer. The
NPCs may comprise non-player controlled characters within
the gameworld and may include animals, villagers, and hos-
tile creatures. In some cases, a game developer may apply a
texture material or apply a three-dimensional voxel material
to one or more voxels (e.g., the game developer may cover a
hill with a green grass texture) using the selection region 52.

FIG. 5D depicts one embodiment of a videogame develop-
ment environment in which a game developer may select a
protagonist. As depicted, the game developer may be given
choices 56 regarding which leading game character or pro-
tagonist will be controlled by a game player of the video
game. In one example, the protagonist may comprise a
fighter, druid, or ranger. The protagonist may correspond with
ahero of the video game. The selected protagonist may com-
prise a character that is controlled by the game developer
during gameplay sequences provided to the game developer
during development of the video game. The selected protago-
nist may comprise the character that is controlled by a game
player when the video game developed by the game developer
is generated and outputted for play by the game player.

In some embodiments, the gameplay sequences provided
to a game developer during development of a video game may
not be accessible or displayed to a game player of the video
game (or to anyone once the video game has been created). In
this case, after the video game has been generated, the ani-
mations and/or data for generating the gameplay sequences
may not be part of the video game. In one example, code
associated with gameplay sequences during video game
development may not be part of the video game.

FIG. 5E depicts one embodiment of a videogame develop-
ment environment in which a gameplay archetype or a story
seed may be selected. A story seed may correspond with a
framework for selecting a sequence of story related events
associated with a video game. A particular sequence of story
related events (e.g., decided by a game developer) may cor-
respond with a video game plot for the video game. In one
example, a story seed may be used to generate one or more
game story options associated with story related decisions for
creating the video game. In one example, if a story seed is
related to a driving game, then a first set of the one or more
game story options may be related to a point of view associ-
ated with the driving game (e.g., should the driving game use
a behind-the-wheel first-person perspective or an outside-the-
car third-person perspective), and a second set of the one or
more game story options may depend upon a first option (e.g.,
the game story option related to a behind-the-wheel first-
person perspective) of the first set of the one or more game
story options and may be related to the primary objective of
the driving game (e.g., whether the primary objective or goal
of the driving game is to win a car race, escape from an

10

15

20

25

30

35

40

45

50

55

60

12

antagonist pursuing the protagonist, or to drive to a particular
location within a gameworld). In some cases, a third set of the
one or more game story options may depend upon a second
option of the one or more game story options and may be
related to identification of the protagonist of the driving
game.

In some embodiments, the story seed may correspond with
a high-level game story selection associated with a root node
of'a decision tree and non-root nodes of the decision tree may
correspond with one or more game story options. Once a
selection of a subset of the game story options associated with
a particular path between a root node of the tree and a leaf
node of the tree has been determined by the game developer,
then a video game may be generated corresponding with the
particular path. Each of the paths from the root node to a leaf
node of the decision tree may correspond with different video
games.

In some embodiments, the story seed may correspond with
one or more game story options that must be determined by
the game developer prior to generating a video game associ-
ated with the story seed. The one or more game story options
may include selection of a protagonist (e.g., the hero of the
video game), selection of an antagonist (e.g., the enemy of the
hero), and selection of a primary objective associated with the
story seed (e.g., saving a princess by defeating the antago-
nist). The primary objective may comprise the ultimate game-
related goal to be accomplished by the protagonist. As
depicted, a game developer may be given choices 58 regard-
ing the story seed associated with the video game. In one
example, the game developer may select between one of three
story seeds including Finder’s Quest, which comprises a mis-
sion where the protagonist must find a hidden object within
the gameworld and return the hidden object to a particular
location within the gameworld.

Once the story seed has been selected by the game devel-
oper, then the game developer may be presented with options
regarding a secondary game objective. Secondary game
objectives may depend upon the selection of the selected
story seed or depend on a previously selected game objective
(e.g., defeating a particular boss or last stage enemy during a
final battle within the video game). In one example, if the
selected story seed is associated with finding a hidden object
within a gameworld, then the secondary game objective may
comprise discovering a tool or resource necessary for finding
the hidden object, such as finding a boat to cross a river that
must be overcome for finding the hidden object. In another
example, if the selected story seed corresponds with having to
defend a village from a monster, then the secondary game
objective my comprise locating a particular weapon neces-
sary to defeat the monster.

In some embodiments, questions regarding secondary (or
dependent) game objectives may be presented to the game
developer during one or more gameplay sequences. In one
example, after a game developer has selected a story seed, a
starting point within the gameworld in which a protagonist
must start their journey, and an ending point for the video
game (e.g., the last castle where the final boss fight will
occur), a gameplay sequence may be displayed to the game
developer in which the game developer may control the pro-
tagonist to encounter NPCs requesting game development
decisions to be made. For example, during a gameplay
sequence, the protagonist may encounter a villager asking the
protagonist to decide which weapon is best to use against the
last stage boss.

FIG. 5F depicts one embodiment of a videogame develop-
ment environment in which game development decisions
may be made during a gameplay sequence provided to a game

US 9,235,924 B2

13

developer during game development. The gameplay
sequence allows the game developer to engage in gameplay
within a game development environment. As depicted, a
game developer may be given a choice 59 regarding a type of
object to be found within the gameworld. The type of object
to be found may correspond with a story seed previously
selected by the game developer. In one example, the game
developer may control the protagonist (or a character repre-
sentation of the protagonist) during a gameplay sequence and
come across an NPC (e.g., a villager) that interacts with the
protagonist and asks a question regarding what type ot hidden
object should be found. The game developer may specify the
object to be found by selecting an object from a list of prede-
termined objects to be found or by allowing the game devel-
opment environment to randomly select an object and to
automatically assign the object to be found (e.g., by selecting
a “surprise me” option).

In some embodiment, during a gameplay sequence a side
quest may be discovered by the game developer while moving
the protagonist along one or more paths between the starting
point and the ending point for the video game. A side quest
may comprise an unexpected encounter during the gameplay
sequence used for rewarding the game developer for engaging
in gameplay. In one embodiment, a side quest may be gener-
ated when the game developer places the protagonist within a
particular region of the gameworld during a gameplay
sequence (e.g., takes a particular path or enters a dwelling
within the gameworld environment). The side quest may pro-
vide additional gameplay in which the game developer may
satisfy conditions that allow additional game development
options to become available to the game developer (e.g.,
additional weapons choices may be unlocked and become
available to the protagonist).

FIG. 6A depicts one embodiment of a video game devel-
opment environment in which a game developer may assign
cubify values to portions of a gameworld. In one embodiment,
a game developer may use a pointer or selection region 601 to
select a region of the gameworld or to select an object within
the gameworld to be assigned one or more cubify values. The
selected region or object may comprise one or more voxels. In
some cases, the selection region 601 may be used to assign a
cubify value to a single voxel within the gameworld. The
pointer or selection region 601 may be controlled by the game
developer using a touchscreen interface, such as touchscreen
display 256 in FIG. 2.

FIG. 6B depicts one embodiment of a video game devel-
opment environment in which a game developer has assigned
a cubify value to a plurality of voxels corresponding with
portions of the gameworld depicted in FIG. 6 A. As depicted,
portions of the gameworld that have been selected using the
selection region 602 have been assigned a cubify value such
that the underlying voxels have been rendered as rectilinear
cubes (e.g., each voxel may be displayed such that it com-
prises only horizontal and/or vertical surfaces). In one
embodiment, a cubify brush (e.g., an editing tool similar to a
paintbrush tool for coloring portions of a gameworld) may be
used to select one or more voxels within a gameworld to be
assigned a cubify value.

FIGS.7A-7D depict various embodiments of a two-dimen-
sional slice through a rendered three-dimension voxel. FIG.
7A depicts one embodiment of a two-dimensional slice
through a rendered voxel comprising a portion of a smooth
isosurface 752 forming a boundary for an opaque volume
751. FIG. 7B depicts one embodiment of a two-dimensional
slice through a rendered voxel comprising a rectilinear cube
753, wherein the rectilinear cube extends to the boundaries of
the voxel. FIG. 7C depicts one embodiment of a two-dimen-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

sional slice through a rendered voxel comprising a portion of
a vertical surface 754 extending through the voxel forming a
boundary for an opaque rectilinear cube 756 and a transparent
region 755. FIG. 7D depicts one embodiment of a two-dimen-
sional slice through a rendered voxel comprising a portion of
avertical surface 758 and a portion of a horizontal surface 760
forming a boundary for an opaque rectilinear volume 762 and
atransparent region 761. As depicted, the portion of a vertical
surface 754 in FIG. 7C, the portion of a vertical surface 758 in
FIG. 7D, and the portion of a horizontal surface 760 in FIG.
7D comprise rectilinear surfaces that are not on a voxel
boundary and instead cut through an interior or a mid-section
of the voxel. In some embodiments, a rendered horizontal
surface and/or vertical surface may be positioned within the
voxel based on fill values associated with the voxel and one or
more of the voxel’s 26 adjacent voxels (e.g., 9 adjacent voxels
located above the voxel, 9 adjacent voxels located below the
voxel, and 8 adjacent voxels within a plane of the voxel). A
first voxel may be adjacent to a second voxel if the first voxel
and the second voxel share a common voxel boundary, voxel
surface, or voxel point.

FIG. 7E depicts one embodiment of a two-dimensional
slice through nine voxels 701-709. As depicted, voxel 701 is
adjacent to voxels 702-709. Voxel 701 is directly adjacent to
voxel 705 located above voxel 701 and directly adjacent to
voxel 706 located below voxel 701. Voxel 701 is associated
with a fill value of 50%, voxel 702 is associated with a fill
value of 10%, voxel 703 is associated with a fill value 0f30%,
voxel 704 is associated with a fill value of 70%, voxel 705 is
associated with a fill value of 20%, voxel 706 is associated
with a fill value of 80%, voxel 707 is associated with a fill
value 0f 30%, voxel 708 is associated with a fill value of 60%,
and voxel 709 is associated with a fill value of 90%. In some
cases, a fill value may be represented as a percentage value or
as a numerical value.

In one embodiment, voxel 701 may be assigned one or
more voxel attributes, such as a material (e.g., a grass material
or a rock material), one or more color values, an opacity
value, a location within a virtual world, a fill value, and a
cubify value. The opacity value may correspond with a degree
to which light is allowed to travel through a transparent region
or volume within the voxel. In some cases, rather than explic-
itly providing a location of a voxel within the virtual world,
the location of the voxel within the virtual world may be
inferred based upon its position relative to other voxels rep-
resenting the virtual world. The one or more colors may
correspond with a red value, a green value, and a blue value.
The fill value may be represented as a percentage value or as
a numerical value that corresponds with a degree to which a
voxel is to be filled with an opaque region or volume within
the voxel. The cubify value may be used to determine how the
voxel is rendered by a rendering engine, for example, whether
the voxel is to be rendered as one or more rectilinear cubes or
as a smooth isosurface. In one embodiment, each voxel of the
plurality of voxels may be associated with a three-dimen-
sional voxel material and a fill value associated with how
much of the voxel is to be filled with the three-dimensional
voxel material (e.g., 70% of the voxel is to be filled with a
green grass texture).

In one embodiment, voxel 701 may be rendered as a recti-
linear cube, such as rectilinear cube 753 in FIG. 7B, if the fill
value associated with voxel 701 is 50% or higher. In another
embodiment, voxel 701 may be rendered to include a vertical
surface forming a boundary for an opaque rectilinear cube,
such as rectilinear cube 756 in FIG. 7C, if the fill value
associated with voxel 701 is 50% or higher and a first adjacent
voxel, such as voxel 708, has a second fill value greater than

US 9,235,924 B2

15

an opposing adjacent voxel, such as voxel 703, located on an
opposing surface of voxel 701 relative to the surface shared
with the first adjacent voxel. In this case, an opaque rectilinear
cube formed within the boundaries of voxel 701 may be
formed such that it shares a surface with the first adjacent
voxel.

In another embodiment, voxel 701 may be rendered to
include a first vertical surface, such as vertical surface 758 in
FIG. 7D, and a second horizontal surface, such as horizontal
surface 760 in FIG. 7D. The first vertical surface and/or the
second horizontal surface may be positioned within the voxel
701. The position of the first vertical surface may be deter-
mined based on the fill value associated with voxel 701 and
one or more adjacent fill values associated with one or more
adjacent voxels that are adjacent to voxel 701. The position of
the second horizontal surface may be determined based on the
fill value associated with voxel 701 and one or more adjacent
fill values associated with one or more adjacent voxels that are
adjacent to voxel 701. In one example, the position of the
second horizontal surface may be determined based on the fill
value of the voxel 701 (e.g., if the fill value is equal to 50%,
then the second horizontal surface may extend through a
midpoint of the voxel 701) and the rectilinear cube associated
with the second horizontal surface may extend towards voxel
706 located below voxel 701 if a first fill value associated with
the voxel 706 (e.g., 80%) is greater than a second fill value
associated with voxel 705 located above voxel 701 (e.g.,
20%). On the other hand, the rectilinear cube associated with
the second horizontal surface may extend towards voxel 705
located above voxel 701 if a second fill value associated with
voxel 705 is greater than a first fill value associated with voxel
706 located below voxel 701.

FIG. 8A is a flowchart describing one embodiment of a
method for generating a virtual world. In one embodiment,
the process of FIG. 8 A may be performed by a gaming con-
sole or computing environment, such as computing environ-
ment 11 in FIG. 1.

In step 802, a plurality of voxels associated with a virtual
world is acquired. The plurality of voxels may include a first
voxel. In step 804, the virtual world is displayed based on the
plurality of voxels or a current state of the plurality of voxels.
The virtual world may be displayed on a display, such as
display 124 in FIG. 1. In step 806, a cubify value is deter-
mined for the first voxel. In one embodiment, a digital cubify
value (e.g., a value of 1.0) may be assigned if a voxel is to be
rendered such that if a fill value associated with the voxel is
50% or greater, then the voxel may be rendered as a rectilinear
cube or a rectangular prism that extends to the boundaries of
the voxel. If a fill value associated with the voxel is less than
50%, then the voxel may be rendered as a transparent block.
In another embodiment, an analog cubify value (e.g., a value
of'0.5) may be assigned if a voxel is to be rendered based on
a fill value associated with the voxel and the position of a
vertical surface within the voxel and/or a horizontal surface
within the voxel are to be determined based on one or more
adjacent fill values associated with one or more adjacent
voxels of the voxel. In this case, an opaque rectilinear volume
within the voxel may be rendered such that the vertical sur-
face and/or the horizontal surface do not extend to or include
the boundaries of the voxel.

In step 808, a selection of the first voxel is detected. In one
embodiment, the selection of the first voxel may be detected
based on a location of a cubify brush within the virtual world.
The cubify brush may be used to assign a cubify value to a
particular voxel within the virtual world. In one example, the
cubify brush may be used to assign the cubify value to one or
more voxels within the virtual world such that the one or more

25

30

35

40

45

55

60

16

voxels comprise cubified voxels. In some cases, a voxel selec-
tion tool may assign a cubify value to a plurality of voxels
within the virtual world corresponding with an object in the
virtual world (e.g., if one voxel of the object is selected, then
all voxels associated with the object may be assigned the
same cubify value). In step 810, the cubify value is assigned
to the first voxel in response to the selection of the first voxel.

In step 812, one or more images of the virtual world are
rendered based on the plurality of voxels subsequent to the
cubify value being assigned to the first voxel. The first voxel
may be rendered based on the cubify value. In one embodi-
ment, if the first voxel has been assigned a non-zero cubify
value, then the first voxel may be rendered to include a recti-
linear volume that extends to the boundaries of the voxel if a
fill value associated with the first voxel is greater than or equal
to 50%. If the fill value is less than 50%, then the first voxel
may be rendered as a transparent block. On the other hand, if
the first voxel has been assigned a cubify value of zero, then
the first voxel may be rendered to include smooth isosurfaces.

In some embodiments, the first voxel may be rendered
based on the cubify value associated with the first voxel and a
fill value associated with the first voxel. The first voxel may be
rendered to include rectilinear surfaces that are not on a voxel
boundary of the first voxel. In one example, if the first voxel
has been assigned a non-zero cubify value, then the first voxel
may be rendered to include a horizontal surface and a vertical
surface, whose position (or positions) within the first voxel
may be determined based on a fill value associated with the
first voxel. In another example, if the first voxel has been
assigned a non-zero cubify value, then the first voxel may be
rendered to include a horizontal surface and a vertical surface,
whose position (or positions) within the first voxel may be
determined based on a fill value associated with the first voxel
and one or more fill values associated with neighboring (or
adjacent) voxels of the first voxel.

In some embodiments, the position of the horizontal sur-
face within the first voxel may be determined based on a first
fill value associated with a first voxel located above the first
voxel and a second fill value associated with a second voxel
located below the first voxel. If the second fill value is greater
than or equal to the first fill value, then a rectilinear volume
(e.g., an opaque cube or an opaque rectangular prism) asso-
ciated with the horizontal surface may extend towards the
second voxel located below the first voxel. In some cases, the
position of the horizontal surface within the first voxel may be
determined based on the fill value of the first voxel. In one
example, if the fill value associated with the first voxel is
equal to 30%, then the second horizontal surface may be
positioned within the first voxel such that 30% of the voxel
volume is covered by an opaque rectilinear volume. If the fill
value associated with the first voxel is equal to 80%, then the
second horizontal surface may be positioned within the first
voxel such that 80% of the voxel volume is covered by an
opaque rectilinear volume.

In step 814, the one or more images are displayed. The one
or more images may include the rendered first voxel. The one
or more images of the virtual world may be displayed on a
display, such as display 124 in FIG. 1. In some embodiments,
the virtual world may be rendered based on a first set of voxels
that may be rendered as rectilinear cubes and a second set of
voxels that may be rendered as smooth isosurfaces. The vir-
tual world may be displayed such that the virtual world
includes a mixture of both hard edged rectilinear surfaces and
smooth rolling surfaces.

FIG. 8B is a flowchart describing an alternative embodi-
ment of a method for generating a virtual world. In one

US 9,235,924 B2

17

embodiment, the process of FIG. 8B may be performed by a
gaming console or computing environment, such as comput-
ing environment 11 in FIG. 1.

In step 822, a plurality of voxels associated with a virtual
world is acquired. The plurality of voxels may include a first
set of voxels and a second set of voxels. In step 824, a first
cubify value associated with rendering a voxel using one or
more rectilinear surfaces is determined. The first cubify value
may comprise a non-zero number or a first alphanumeric
sequence. In step 826, a second cubify value associated with
rendering a voxel using one or more smooth isosurfaces is
determined. The second cubify value may comprise a zero
value, a null value, or a second alphanumeric sequence.

In step 828, the first cubify value is assigned to each voxel
of the first set of voxels. In one embodiment, a cubify brush
may be used to assign the first cubify value to the first set of
voxels. In some cases, a voxel selection tool may assign the
first cubify value to the first set of voxels. In step 830, the
second cubify value is assigned to each voxel of the second set
of voxels.

In step 832, one or more images of the virtual world are
rendered based on the plurality of voxels. Each voxel of the
first set of voxels may be rendered based on one or more fill
values associated with one or more adjacent voxels to the
voxel. In one embodiment, a first voxel of the first set of
voxels may be rendered based on one or more fill values
associated with one or more adjacent voxels to the first voxel.
In one example, the first voxel may be rendered based on the
first cubify value associated with the first voxel and a fill value
associated with the first voxel. The first voxel may be ren-
dered to include rectilinear surfaces that are not on a voxel
boundary of the first voxel. In one example, if the first voxel
has been assigned a non-zero cubify value, then the first voxel
may be rendered to include a horizontal surface whose posi-
tion within the first voxel may be determined based on a fill
value associated with the first voxel. In another example, if
the first voxel has been assigned a non-zero cubify value, then
the first voxel may be rendered to include a horizontal surface
whose position within the first voxel may be determined
based on a fill value associated with the first voxel and one or
more fill values associated with adjacent voxels of the first
voxel.

In some embodiments, the position of the horizontal sur-
face within the first voxel may be determined based on a first
fill value associated with a first voxel located above the first
voxel and a second fill value associated with a second voxel
located below the first voxel. If the second fill value is greater
than or equal to the first fill value, then an opaque rectilinear
volume including the horizontal surface may extend towards
the second voxel located below the first voxel. In some cases,
the position of the horizontal surface within the first voxel
may be determined based on the fill value of the first voxel. In
one example, if the fill value associated with the first voxel is
equal to 10%, then the second horizontal surface may be
positioned within the first voxel such that 10% of the voxel
volume is covered by the opaque rectilinear volume.

In step 834, the one or more images of the virtual world are
displayed. The one or more images of the virtual world may
be displayed on a display, such as display 124 in FIG. 1. The
one or more images of the virtual world may include both
hard edged rectilinear surfaces and smooth rolling surfaces.

One embodiment of the disclosed technology includes
acquiring a plurality of voxels associated with a virtual world.
The plurality of voxels includes a first voxel. The method
further comprises assigning a cubify value to the first voxel
using a voxel selection tool and rendering one or more images
of'the virtual world based on the plurality of voxels. The first

10

15

20

25

30

35

40

45

50

55

60

65

18

voxel is rendered to include one or more rectilinear surfaces
positioned within the first voxel based on the cubify value
assigned to the first voxel. The method further comprises
displaying the one or more images. The one or more images
include the rendered first voxel.

One embodiment of the disclosed technology includes a
memory and one or more processors in communication with
the memory. The memory stores a plurality of voxels associ-
ated with a virtual world. The plurality of voxels includes a
first voxel. The one or more processors assign a cubify value
to the first voxel using a voxel selection tool and render one or
more images of the virtual world based on the plurality of
voxels. The first voxel is rendered to include one or more
rectilinear surfaces positioned within the first voxel based on
the cubify value assigned to the first voxel. The one or more
processors cause the one or more images to be displayed (e.g.,
on a touchscreen display). The one or more images include
the rendered first voxel.

One embodiment of the disclosed technology includes
acquiring at a computing system a plurality of voxels associ-
ated with a virtual world. The plurality of voxels includes a
first voxel. The first voxel is associated with a first fill value.
The method further comprises assigning a first cubify value to
the first voxel. The first cubify value is associated with caus-
ing the first voxel to be rendered using one or more rectilinear
surfaces. The method further comprises rendering one or
more images of the virtual world based on the plurality of
voxels. The first voxel is rendered to include the one or more
rectilinear surfaces. The one or more rectilinear surfaces are
positioned within the first voxel based on the first fill value.
The rendering one or more images includes rendering the first
voxel based on one or more fill values associated with one or
more adjacent voxels to the first voxel. The method further
comprises displaying the one or more images. The one or
more images include the rendered first voxel.

The disclosed technology may be used with various com-
puting systems. FIGS. 9-10 provide examples of various
computing systems that can be used to implement embodi-
ments of the disclosed technology.

FIG. 10 is a block diagram of one embodiment of a mobile
device 8300, such as mobile device 12 in FIG. 1. Mobile
devices may include laptop computers, pocket computers,
mobile phones, personal digital assistants, and handheld
media devices that have been integrated with wireless
receiver/transmitter technology.

Mobile device 8300 includes one or more processors 8312
and memory 8310. Memory 8310 includes applications 8330
and non-volatile storage 8340. Memory 8310 can be any
variety of memory storage media types, including non-vola-
tile and volatile memory. A mobile device operating system
handles the different operations of the mobile device 8300
and may contain user interfaces for operations, such as plac-
ing and receiving phone calls, text messaging, checking
voicemail, and the like. The applications 8330 can be any
assortment of programs, such as a camera application for
photos and/or videos, an address book, a calendar application,
a media player, an internet browser, games, an alarm appli-
cation, and other applications. The non-volatile storage com-
ponent 8340 in memory 8310 may contain data such as music,
photos, contact data, scheduling data, and other files.

The one or more processors 8312 also communicates with
RF transmitter/receiver 8306 which in turn is coupled to an
antenna 8302, with infrared transmitter/receiver 8308, with
global positioning service (GPS) receiver 8365, and with
movement/orientation sensor 8314 which may include an
accelerometer and/or magnetometer. RF transmitter/receiver
8308 may enable wireless communication via various wire-

US 9,235,924 B2

19

less technology standards such as Bluetooth® or the IEEE
802.11 standards. Accelerometers have been incorporated
into mobile devices to enable applications such as intelligent
user interface applications that let users input commands
through gestures, and orientation applications which can
automatically change the display from portrait to landscape
when the mobile device is rotated. An accelerometer can be
provided, e.g., by a micro-electromechanical system
(MEMS) which is a tiny mechanical device (of micrometer
dimensions) built onto a semiconductor chip. Acceleration
direction, as well as orientation, vibration, and shock can be
sensed. The one or more processors 8312 further communi-
cate with a ringer/vibrator 8316, a user interface keypad/
screen 8318, a speaker 8320, a microphone 8322, a camera
8324, alight sensor 8326, and a temperature sensor 8328. The
user interface keypad/screen may include a touch-sensitive
screen display.

The one or more processors 8312 controls transmission
and reception of wireless signals. During a transmission
mode, the one or more processors 8312 provide voice signals
from microphone 8322, or other data signals, to the RF trans-
mitter/receiver 8306. The transmitter/receiver 8306 transmits
the signals through the antenna 8302. The ringer/vibrator
8316 is used to signal an incoming call, text message, calen-
dar reminder, alarm clock reminder, or other notification to
the user. During a receiving mode, the RF transmitter/receiver
8306 receives a voice signal or data signal from a remote
station through the antenna 8302. A received voice signal is
provided to the speaker 8320 while other received data signals
are processed appropriately.

Additionally, a physical connector 8388 may be used to
connect the mobile device 8300 to an external power source,
such as an AC adapter or powered docking station, in order to
recharge battery 8304. The physical connector 8388 may also
be used as a data connection to an external computing device.
The data connection allows for operations such as synchro-
nizing mobile device data with the computing data on another
device.

FIG. 10 is a block diagram of an embodiment of a comput-
ing system environment 2200, such as computing environ-
ment 11 in FIG. 1. Computing system environment 2200
includes a general purpose computing device in the form of'a
computer 2210. Components of computer 2210 may include,
but are not limited to, a processing unit 2220, a system
memory 2230, and a system bus 2221 that couples various
system components including the system memory 2230 to the
processing unit 2220. The system bus 2221 may be any of
several types of bus structures including a memory bus, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer 2210 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 2210 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer stor-
age media. Computer storage media includes both volatile
and nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of informa-
tion such as computer readable instructions, data structures,
program modules or other data. Computer storage media
includes, but is not limited to, RAM, ROM, EEPROM, flash

30

40

45

55

20

memory or other memory technology, CD-ROM, digital ver-
satile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can accessed by
computer 2210. Combinations of the any of the above should
also be included within the scope of computer readable
media.

The system memory 2230 includes computer storage
media in the form of volatile and/or nonvolatile memory such
as read only memory (ROM) 2231 and random access
memory (RAM) 2232. A basic input/output system 2233
(BIOS), containing the basic routines that help to transfer
information between elements within computer 2210, such as
during start-up, is typically stored in ROM 2231. RAM 2232
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated on
by processing unit 2220. By way of example, and not limita-
tion, FIG. 10 illustrates operating system 2234, application
programs 2235, other program modules 2236, and program
data 2237.

The computer 2210 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 10 illustrates a hard disk drive
2241 that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 2251 that reads from
or writes to a removable, nonvolatile magnetic disk 2252, and
an optical disk drive 2255 that reads from or writes to a
removable, nonvolatile optical disk 2256 such as a CD ROM
or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards, digi-
tal versatile disks, digital video tape, solid state RAM, solid
state ROM, and the like. The hard disk drive 2241 is typically
connected to the system bus 2221 through an non-removable
memory interface such as interface 2240, and magnetic disk
drive 2251 and optical disk drive 2255 are typically connected
to the system bus 2221 by a removable memory interface,
such as interface 2250.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 10, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 2210. In FIG. 10, for
example, hard disk drive 2241 is illustrated as storing oper-
ating system 2244, application programs 2245, other program
modules 2246, and program data 2247. Note that these com-
ponents can either be the same as or different from operating
system 2234, application programs 2235, other program
modules 2236, and program data 2237. Operating system
2244, application programs 2245, other program modules
2246, and program data 2247 are given different numbers
here to illustrate that, at a minimum, they are different copies.
A user may enter commands and information into computer
2210 through input devices such as a keyboard 2262 and
pointing device 2261, commonly referred to as a mouse,
trackball, or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often
connected to the processing unit 2220 through a user input
interface 2260 that is coupled to the system bus, but may be
connected by other interface and bus structures, such as a
parallel port, game port or a universal serial bus (USB). A
monitor 2291 or other type of display device is also connected
to the system bus 2221 via an interface, such as a video
interface 2290. In addition to the monitor, computers may
also include other peripheral output devices such as speakers

US 9,235,924 B2

21

2297 and printer 2296, which may be connected through an
output peripheral interface 2295.

The computer 2210 may operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as a remote computer 2280. The remote com-
puter 2280 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 2210, although only a memory
storage device 2281 has been illustrated in FIG. 10. The
logical connections depicted in FIG. 10 include a local area
network (LAN) 2271 and a wide area network (WAN) 2273,
but may also include other networks. Such networking envi-
ronments are commonplace in offices, enterprise-wide com-
puter networks, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 2210 is connected to the LAN 2271 through a network
interface or adapter 2270. When used in a WAN networking
environment, the computer 2210 typically includes a modem
2272 or other means for establishing communications over
the WAN 2273, such as the Internet. The modem 2272, which
may be internal or external, may be connected to the system
bus 2221 via the user input interface 2260, or other appropri-
ate mechanism. In a networked environment, program mod-
ules depicted relative to the computer 2210, or portions
thereof, may be stored in the remote memory storage device.
By way of example, and not limitation, FIG. 10 illustrates
remote application programs 2285 as residing on memory
device 2281. It will be appreciated that the network connec-
tions shown are exemplary and other means of establishing a
communications link between the computers may be used.

The disclosed technology may be operational with numer-
ous other general purpose or special purpose computing sys-
tem environments. Examples of other computing system
environments that may be suitable for use with the disclosed
technology include, but are not limited to, personal comput-
ers, server computers, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, program-
mable consumer electronics, network PCs, minicomputers,
mainframe computers, and distributed computing environ-
ments that include any of the above systems or devices, and
the like.

The disclosed technology may be described in the general
context of computer-executable instructions, such as program
modules, being executed by a computer. Generally, software
and program modules as described herein include routines,
programs, objects, components, data structures, and other
types of structures that perform particular tasks or implement
particular abstract data types. Hardware or combinations of
hardware and software may be substituted for software mod-
ules as described herein.

The disclosed technology may also be practiced in distrib-
uted computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located in both local and remote
computer storage media including memory storage devices.

For purposes of this document, each process associated
with the disclosed technology may be performed continu-
ously and by one or more computing devices. Each step in a
process may be performed by the same or different computing
devices as those used in other steps, and each step need not
necessarily be performed by a single computing device.

For purposes of this document, reference in the specifica-

tion to “an embodiment,” “one embodiment,” “some embodi-

29 4¢

10

15

20

25

30

35

40

45

50

55

60

65

22

ments,” or “another embodiment” may be used to described
different embodiments and do not necessarily refer to the
same embodiment.

For purposes of this document, a connection can be a direct
connection or an indirect connection (e.g., via another part).

For purposes of this document, the term “set” of objects,
refers to a “set” of one or more of the objects.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method for generating a virtual world, comprising:

acquiring a plurality of voxels associated with the virtual
world, the plurality of voxels includes a first voxel;

assigning a cubify value to the first voxel using a voxel
selection tool;

rendering one or more images of the virtual world based on
the plurality of voxels, the first voxel is rendered to
include one or more rectilinear surfaces positioned
within the first voxel based on the cubify value assigned
to the first voxel; and

displaying the one or more images, the one or more images
include the rendered first voxel.

2. The method of claim 1, wherein:

the rendering one or more images includes rendering the
first voxel based on one or more fill values associated
with one or more adjacent voxels to the first voxel.

3. The method of claim 2, wherein:

the one or more adjacent voxels include a second voxel
located above the first voxel and a third voxel located
below the first voxel, the second voxel is associated with
a second fill value, the third voxel is associated with a
third fill value.

4. The method of claim 3, wherein:

the one or more rectilinear surfaces positioned within the
first voxel include a horizontal surface positioned within
the first voxel, the rendering the first voxel includes
rendering a rectilinear volume extending from the hori-
zontal surface based on the second fill value and the third
fill value.

5. The method of claim 4, wherein:

the rectilinear volume extending from the horizontal sur-
face extends towards the second voxel if the second fill
value is greater than the third fill value.

6. The method of claim 4, wherein:

the rectilinear volume extending from the horizontal sur-
face comprises an opaque rectilinear prism.

7. The method of claim 1, wherein:

the one or more rectilinear surfaces positioned within the
first voxel include a vertical surface positioned within
the first voxel, the vertical surface is positioned within
the first voxel based on a fill value associated with the
first voxel.

8. The method of claim 1, wherein:

the plurality of voxels includes a second voxel, the second
voxel is rendered to include one or more smooth isosur-
faces, the one or more images include the rendered first
voxel and the rendered second voxel.

9. The method of claim 1, wherein:

the virtual world comprises a gameworld; and

the voxel selection tool comprises a cubify brush.

US 9,235,924 B2

23

10. The method of claim 1, wherein:

the assigning a cubify value includes simultaneously
assigning the cubify value to a first set of voxels of the
plurality of voxels associated with an object within the
virtual world using the voxel selection tool.

11. The method of claim 1, wherein:

the displaying the one or more images includes displaying
the one or more images using a touchscreen display; and

the assigning a cubify value includes assigning the cubify
value to the first voxel using the touchscreen display.

12. A system for generating a virtual world, comprising:

a memory, the memory stores a plurality of voxels associ-
ated with the virtual world, the plurality of voxels
includes a first voxel; and

one or more processors in communication with the
memory, the one or more processors assign a cubify
value to the first voxel using a voxel selection tool, the
one or more processors render one or more images of the
virtual world based on the plurality of voxels, the first
voxel is rendered to include one or more rectilinear
surfaces positioned within the first voxel based on the
cubify value assigned to the first voxel, the one or more
processors cause the one or more images to be displayed,
the one or more images include the rendered first voxel.

13. The system of claim 12, wherein:

the one or more processors render the first voxel based on
one or more fill values associated with one or more
adjacent voxels to the first voxel.

14. The system of claim 13, wherein:

the one or more adjacent voxels include a second voxel
located above the first voxel and a third voxel located
below the first voxel, the second voxel is associated with
a second fill value, the third voxel is associated with a
third fill value.

15. The system of claim 14, wherein:

the one or more rectilinear surfaces positioned within the
first voxel include a horizontal surface positioned within
the first voxel, the one or more processors render the first
voxel to include a rectilinear volume extending from the
horizontal surface based on the second fill value and the
third fill value.

10

20

25

30

35

24

16. The system of claim 15, wherein:

the rectilinear volume extending from the horizontal sur-
face extends towards the second voxel if the second fill
value is greater than the third fill value.

17. The system of claim 15, wherein:

the rectilinear volume extending from the horizontal sur-
face comprises an opaque rectilinear prism.

18. The system of claim 12, wherein:

the virtual world comprises a gameworld; and

the voxel selection tool comprises a cubify brush.

19. One or more physical hardware storage devices con-

taining processor readable code for programming one or
more processors to perform a method for generating a virtual
world using a computing system comprising the steps of:

acquiring at the computing system a plurality of voxels
associated with the virtual world, the plurality of voxels
includes a first voxel, the first voxel is associated with a
first fill value;

assigning a first cubify value to the first voxel, the first
cubify value is associated with causing the first voxel to
be rendered using one or more rectilinear surfaces;

rendering one or more images of the virtual world based on
the plurality of voxels, the first voxel is rendered to
include the one or more rectilinear surfaces, the one or
more rectilinear surfaces are positioned within the first
voxel based on the first fill value, the rendering one or
more images includes rendering the first voxel based on
one or more fill values associated with one or more
adjacent voxels to the first voxel; and

displaying the one or more images, the one or more images
include the rendered first voxel.

20. The one or more physical hardware storage devices of

claim 19, wherein:

the one or more rectilinear surfaces positioned within the
first voxel include a horizontal surface positioned within
the first voxel, the rendering the first voxel includes
rendering an opaque rectangular prism extending from
the horizontal surface.

#* #* #* #* #*

